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Melting of columnar hexagonal DNA liquid crystals
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Abstract. The persistence length DNA hexagonal-cholesteric phase transition upon dilution and/or in-
crease in solvent ionic strength is investigated with polarized light microscopy. The ionic strength depen-
dence of the transition follows Lindemann criterion CL = 0.098 ± 0.003, i.e., the hexagonal lattice melts
when the root-mean-square fluctuations in transverse order exceed 10% of the interaxial spacing. The
spacings are derived from density and the fluctuations are estimated with a theory of undulation enhanced
electrostatic interactions. Additional support for this theory is given by the DNA equation of state and
anisotropic neutron radiation scattering from magnetically aligned cholesteric samples just below the phase
transition.

PACS. 64.70.-p Specific phase transition – 61.25.-f Studies of specific liquid structures – 87.15.-v Molecular
biophysics

Introduction

DNA liquid crystalline structures have been observed in
plasmid DNA in bacteria, viruses, mitochondria, and in
vitro [1–3]. Linear DNA dispersed in water or salt solu-
tions shows at least two first-order transitions from the
isotropic, through the cholesteric, to the columnar hexag-
onal phase, if the DNA volume fraction is increased. Before
the appearance of the cholesteric phase blue phases and/or
precholesteric structures have been reported, whereas very
concentrated phases are true crystals [1,3]. In the present
work no evidence was found for a continuous cholesteric-
hexagonal phase transition. The phase diagram depends
on, e.g., solvent ionic strength, DNA contour length,
and counterion variety. In another publication we report
the critical boundary concentrations pertaining to the
isotropic-cholesteric phase transition [4]. Here, we focus
on the melting of the columnar hexagonal phase upon di-
lution and/or increase in ionic strength.

No satisfactory theory of hexagonal melting for semi-
flexible chains exists. Selinger and Bruinsma’s phase dia-
gram based on the second virial approximation is quali-
tative only, since the critical boundary volume fractions
are above close packing [5]. However, despite this incon-
sistency, their results bear out the empirical Lindemann
melting rule [6]: the hexagonal lattice melts when the root-
mean-square undulation amplitude exceeds a certain frac-
tion of the interaxial spacing. The Lindemann criterion
has also been used to predict the melting curve of the
Abrikosov vortex lattice in high Tc superconductors [7].
The flux lines also form a columnar hexagonal lattice and
interact with a screened potential, similar to the Coulomb
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potential in cylindrical polyelectrolytes with excess simple
salt. The screening length, i.e., the London penetration
depth λ, usually exceeds the intervortex spacing. In DNA
liquid crystals, the electrostatic complement of λ, i.e., the
Debye length κ−1, is of order the undulation amplitude
and typically much smaller than the interaxial spacing R.
The analogy with the Abrikosov vortex lattice has been
used to predict high density reentrant melting of flexible
charged polymers for κR� 1 [8].

Odijk has shown that melting of a lamellar or hexago-
nal phase follows the Lindemann rule, provided the elec-
trostatic interactions are exponentially renormalized for
undulations [9–11]. The renormalization factor is poten-
tially large, because for dense systems the undulation
amplitude can be of order the Debye screening length.
For smectic lamellae an average Lindemann ratio CL =
0.138±0.003 was derived. In case of high molecular weight
DNA (Mw > 106), the average value is CL = 0.128 ±
0.007 with a small systematic variation with solvent ionic
strength. However, the interaxial spacings were not de-
rived from coexisting phases, but from upper bounds of
discernible hexagonal order reported by Podgornik et al.
(R = 4−5 nm) [12]. From more recent data of long DNA
[13], X-ray scattering results of 50 nm fragments [14], and
the present work it appears that the transition occurs at
slightly smaller R values.

For short DNA fragments immersed in water or salt
solutions, we determined the critical volume fractions rep-
resenting the onset of melting and total disappearance of
the columnar hexagonal phase. The weight average con-
tour length is 42 nm, which is approximately equal to the
persistence length (50 nm). The DNA molecules can be
viewed as semi-flexible rodlike chains; each surrounded by
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a double layer formed by counterions and possibly added
salt. The effect of counterion variety has been investigated
by bringing Na-DNA into the Cs and/or tetramethylam-
monium (TMA) form. The phase boundaries are obtained
from step-like dilution experiments of equilibrated samples
under parallel inspection by polarized light microscopy.
For a review of polarization microscopy textures in the
context of DNA liquid crystal structures and phase tran-
sitions see reference [1].

At the hexagonal side of the melting transition, the
Lindemann ratio is derived from the experimental interax-
ial spacings and fluctuations in transverse order estimated
by Odijk’s theory. For an independent test, we have com-
pared the theoretical predictions for the osmotic pressure
with the equation of state of long DNA (Mw > 108) [13].
Furthermore, at the cholesteric side of the transition, the
undulation amplitude and related orientation fluctuations
are experimentally determined from anisotropic Small An-
gle Neutron Scattering (SANS) [15,16]. For this purpose,
the cholesteric axis is aligned perpendicular to the incom-
ing neutron beam with a magnetic field. Unfortunately,
this procedure could not be applied to hexagonal DNA,
because normal to the magnetic field the director has no
preferential orientation [17]. The undulation amplitude at
the hexagonal side will be compared to the experimental
cholesteric value.

Undulation theory

Assuming weak chain undulations with root-mean-square
amplitude u in the hexagonal lattice, a self-consistent
Gaussian segment position distribution in the plane per-
pendicular to the director can be postulated. The Gaus-
sian approximation has recently been verified in a Monte-
Carlo simulation for DNA confined by a quadratic poten-
tial [8]. Each wormlike chain with persistence length P
(P � u) is effectively enclosed in a cylindrical “fuzzy”
tube of approximate diameter u. The chain undulates
within its confinement with a characteristic deflection
length λ = u2/3P 1/3 and orientation fluctuations with
standard deviation σ = (u/P )1/3 [18].

The undulation amplitude u at fixed interaxial spac-
ing R can be obtained from minimization of the chain free
energy. The total free energy is the sum of the free ener-
gies of confinement and undulation enhanced electrostatic
interactions. This procedure yields an asymptotic relation
between u and R [9]

u8/3U(u,R, κ)E(κR, ξeff) =
2cQ

9P 1/3κ2
(1)

and the coefficient c takes the value 3× 2−5/3 (this value
refers to a worm confined by a quadratic potential and
undulating in two dimensions [8,19,20]). Equation (1) has
been derived with the assumptions that the deflection seg-
ment behaves like a uniformly charged rod (λ� κ−1) and
the inner double layers do not overlap. Accordingly, the
bare interaction E decays like an effective Debye-Hückel

potential (solution of the linearized Poisson-Boltzmann
equation) [21]

E(κR, ξeff ) = ξ2
eff

(
2π

κR

)1/2

exp(−κR) (2)

which is renormalized for undulations by the factor

U(u,R, κ) =
exp(κ2u2/2)

1 + κu2R−1/2
· (3)

The effective charge density parameter ξeff can be calcu-
lated from the Poisson-Boltzmann equation for a cylindri-
cal polyion in excess salt, taking into account non-linear
screening within the inner double layers [22]. For this pur-
pose, the effective Debye-Hückel potential is matched (by
variation of ξeff ) to the numerical solution of the non-
linear Poisson-Boltzmann equation for distances from the
polyion large compared to the screening length (in the
region where the potential drops below kT ). The Debye
screening length κ−1 is given by κ2 = 8πQIs, with the
Bjerrum length Q (0.71 nm, 298 K) and ionic strength Is.
Equation (3) shows that if κu is of order unity the bare
interactions are strongly enhanced, even if the undulation
amplitude is much smaller than the interaxial spacing.
Undulation theory predicts for the osmotic pressure [9]

Πos

kT
=

2c

33/2κRu8/3P 1/3

=
31/2κU(u,R, κ)E(κR, ξeff)

QR
(4)

where the undulation parameter u has to be numerically
determined from equations (1–3). If the bare electrostatic
interactions are not exponentially renormalized for undu-
lations (κu � 1), the osmotic pressure goes as a sum
of simple power laws with multiple decay lengths per-
taining to hydration forces (λH), screened electrostatics
(λD = κ−1), and fluctuation enhanced repulsion (4λD)
[8,13,23]. For κu of order unity no simple power or decays
laws can be derived [11].

A remark should be made about the range of the trans-
verse hexagonal order. For the electrostatic interactions,
only the contribution of the nearest neighbors in the lat-
tice has to be taken into account, since the potential de-
cays exponentially and typically κR� 1. The free energy
of confinement is also derived for local hexagonal packing
and does not depend on the dimensions of the crystal in
the transverse direction. Accordingly, for the application
of undulation theory short range hexagonal order is that
is all required.

Experimental section

DNA fragments were obtained by a micrococcal nuclease
digestion of calf thymus chromatin according to a proce-
dure described by Wang et al. [24]. After precipitation in
cold 2-propanol, the DNA pellet was dried under reduced
pressure at room temperature. The DNA was brought to
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the salt free sodium form by dissolving the pellet in a
50 mM NaCl, 24 mM EDTA buffer, and extensive dialysis
against water (purified by a Millipore system with conduc-
tivity less than 1× 10−6 Ω−1cm−1). Care was taken that
the nucleotide concentration did not drop below 3 mM.
Under this condition the ionic strength is always high
enough to avoid denaturation of the double helix, even
without supporting electrolyte [25,26]. The advantage of
the isolation procedure is that it yields a large quantity of
mononucleosomal DNA, but a typical batch contains ap-
proximately 25% lower and higher molecular weight mate-
rial. The DNA was further fractionated with preparative
Size Exclusion Chromatography (SEC) with light scatter-
ing detection [27]. The Na-DNA fragments have an aver-
age molecular weight Mw = 81 000 (123 base pairs, length
L = 42 nm) with Mw/Mn = 1.17; the lower and higher
molecular weight material is removed. The ratio of the
optical absorbencies A260/A280 = 1.9 shows the DNA is
essentially free of protein [28]. DNA with TMA+ or Cs+

counterions was prepared by flowing a Na-DNA solution
through a cation exchange resin (Biorad AG 50W X2).
Atomic absorbance spectroscopy showed that the mate-
rial is salt free and that the residual sodium content in
Cs-DNA and TMA-DNA amounts 0.6 and 0.2%, respec-
tively. The hypochromic effect at 260 nm exceeds 35%,
which confirms the integrity of the double helix and that
the fragments are not denatured during dialysis, counte-
rion exchange, and/or SEC fractionation. The material
was freeze-dried and the residual water content was deter-
mined by IR spectroscopy.

Hexagonal samples were prepared by dissolving freeze-
dried DNA in pure water or salt solutions. The salt solu-
tions are 0.25, 0.75, and 1.5 M NaCl, CsCl, or TMACl.
The DNA concentration was determined by weight and
checked with UV spectroscopy. The samples were step-like
diluted with pure water or the relevant salt solutions and
allowed to equilibrate for 3 days to 2 weeks for the more
viscous samples. Long term stability and reproducibility
confirm that the samples are at equilibrium without spa-
tial concentration gradients. After each dilution step a
droplet was deposited and sealed between a microscope
slide and coverslip and observed through crossed polaris-
ers with a Leica DMR microscope with 40 × and 100 ×
objectives at ambient temperature. The reproducibility in
the determination of the critical volume fractions (which
is an estimate of the experimental error in concentration)
is better than 3%.

For neutron scattering two TMA-DNA samples were
prepared in pure water and 0.25 M TMACl, with DNA vol-
ume fractions φ = 0.11 and 0.12, respectively. These sam-
ples are just below the hexagonal-cholesteric phase transi-
tion and fully cholesteric. The scattering experiments were
done at the LOQ SANS instrument, situated on the pulsed
spallation source of the ISIS facility, Rutherford Apple-
ton Laboratory, Didcot, UK. The cholesteric axis was ori-
ented perpendicular to the incoming neutron beam with a
1.7 T magnetic field. For a description of the experimental
setup and data analysis see references [15,16]. The two-
dimensional scattering patterns show a peak at 1.7 nm−1,

Fig. 1. TMA-DNA SANS intensity divided by nucleotide con-
centration and squared contrast at the peak position qm =
0.17 nm−1 vs. angle α between the cholesteric axis and direc-
tion of momentum transfer. (•) H2O, φ = 0.11; (◦) 0.25 M
TMACl, φ = 0.12. The line represents the anisotropy of the
form function of a uniform segment with radius 0.8 nm, qλ� 1,
and σ = 12◦ (qλ ≈ 4).

with an anisotropy in intensity as function of the angle
α between the cholesteric axis and the direction of mo-
mentum transfer. Figure 1 displays the peak intensities
divided by concentration and squared contrast vs. α. The
data of the four equivalent detector quadrants have been
averaged.

Results and discussion

Hexagonal-cholesteric phase boundaries

The hexagonal phase appears opaque under visual in-
spection and exhibits the characteristic fan-like shapes
under microscopic observation. The cholesteric phase is
iridescent and displays the characteristic fingerprint-like
textures. In the biphasic region, the textures show bril-
liant islands of hexagonal fan-like structures immersed in
a cholesteric background [1,3]. The critical DNA volume
fractions φh and φc representing the onset of melting and
complete disappearance of the hexagonal phase, respec-
tively, are collected in Table 1. To allow direct comparison
between solutions with different counterions, the volume
fractions refer to DNA only. Boundary concentrations in
mole of nucleotides/L can be obtained by dividing the
volume fractions by the nucleotide partial molar volume
Vm = 172 cm3/mol. The transition is weak first order
with relatively small differences in DNA concentration in
the coexisting phases. With increasing ionic strength, both
critical volume fractions increase. Another observation is
the significant decrease in φh and φc upon a change of the
counterion species from alkali (Na+ and Cs+) to TMA+.

The spacings R (at the melting transition φh) are de-
rived from the hexagonal unit cell volume

√
3R2A/2 =

Vm/φh with linear nucleotide (charge) spacing A =
0.171 nm. These density values are collected in Table
1. Durand et al. reported R = 3.15 nm from the very
strong and narrow X-ray Bragg reflection at the transi-
tion of 50 nm Na-DNA fragments in 0.25 M NaCl [14]. We
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Table 1. DNA critical volume fractions corresponding to the onset of melting and complete disappearance of the hexagonal
phase φh and φc, respectively. The interaxial spacing R, effective charge density ξeff , Lindemann ratio CL, deflection length
λ, and orientation width σ refer to the hexagonal side. The parameters κu and κR monitor the range of undulations and
electrostatic interactions, respectively.

Is (M) φc φh R (nm) ξeff κu κR CL λ (nm) σ

Na-DNA/NaCl; D0 = 2.1 nm

0.10 0.135 0.143 3.7 4.34 0.38 3.81 0.099 1.87 11.1◦

0.37 0.167 0.176 3.3 12.1 0.63 6.62 0.094 1.69 10.5◦

0.88 0.171 0.193 3.2 36.1 0.97 9.76 0.100 1.71 10.6◦

1.65 0.192 0.213 3.0 111 1.26 12.7 0.099 1.65 10.4◦

Cs-DNA / CsCl; D0 = 2.1 nm

0.11 0.144 0.151 3.6 4.48 0.37 3.81 0.097 1.82 10.9◦

0.37 0.151 0.177 3.3 12.2 0.62 6.61 0.094 1.69 10.5◦

1.64 0.190 0.205 3.1 110 1.33 12.9 0.103 1.71 10.6◦

TMA-DNA/TMACl; D0 = 2.3 nm

0.08 0.109 0.114 4.1 4.24 0.37 3.81 0.098 2.00 11.5◦

0.35 0.130 0.137 3.8 13.5 0.72 7.24 0.099 1.90 11.1◦

obtained from SANS experiments on similar TMA-DNA
fragments without excess salt R = 4.19 nm [29]. The in-
teraxial spacings obtained from the scattering experiments
are in agreement with the relevant entries in Table 1. The
position of the primary SANS peak and the characteristic
(weak) higher order reflection confirm a hexagonal molec-
ular arrangement.

The effective charge density ξeff is obtained from
the non-linear Poisson-Boltzmann equation for cylindrical
polyelectrolytes with excess simple salt [22]. DNA coun-
terion screening cannot be neglected and has been in-
cluded according to the condensation concept [30]. With-
out added simple salt, screening is assumed to originate
from the uncondensed fraction 0.24 only. This is a poor
approximation, which gives questionable results for solu-
tions in pure water. The potential depends on the distance
of closest approach of the small ions to the DNA z-axis.
Different counterions have different distances of closest ap-
proach, due to differences in size and/or hydration prop-
erties. These effects are taken into account by setting the
bare diameter D0 to 2.1 nm for alkali (Na- and Cs-) and
2.3 nm for TMA-DNA. These bare diameters are in agree-
ment with a DNA outer diameter 2 nm. As collected in
Table 1, ξeff varies over an order of magnitude when the
ionic strength is increased from, say, 0.1 to 1.7 M.

The undulation parameter u at given R has numer-
ically been determined from equations (1–3). The DNA
persistence length P has been set to its intrinsic value
50 nm, since charge effects on the bending rigidity are
negligible in the present ionic strength range. As collected
in Table 1, the interaxial spacings are typically an order of
magnitude larger than the Debye screening length. Despite
the fact that the undulations and screening lengths are
small, κu is of order unity and the electrostatic potential
is renormalized by a large factor U(u,R, κ) ≈ exp(κ2u2/2)
[9]. At the melting transition, the Lindemann ratio CL =
u/R is constant over a four-fold change in screening length

with average value CL = 0.098±0.003 (the non-systematic
variation is due to inaccuracy in φh). The cation size ef-
fect can be accounted for by a small increase in D0. The
deflection length λ, and orientation parameter σ are also
collected in Table 1. Due to tiny undulations, the deflec-
tion length is short of order 2 nm (but λ � κ−1) with
a narrow distribution in orientation fluctuations of order
11◦.

The Lindemann ratio is sensitive to the spacing R and
bare diameter D0. The variation of CL with R depends on
ionic strength, e.g., at the melting transition in 1.0 and
0.1 M NaCl one obtains ∂CL/∂R ≈ 0.061 and 0.026, re-
spectively. Accordingly, the slightly higher reported value
for long DNA CL = 0.128± 0.007 (and the small system-
atic variation with ionic strength) can be explained by
an overestimation of R by 0.5−1.0 nm [10]. The present
Lindemann ratio is in the range of those derived for the
melting of the Abrikosov flux line lattice in high Tc su-
perconductors CL = 0.15 [31], and Monte-Carlo results
on the fluid-solid transition in the Lennard-Jones system
CL = 0.14 [6]. Furthermore, changing the dimensionality
of the system from two to one reduces the Lindemann ra-
tio from 0.14 to 0.10. For these widely different systems,
the Lindemann ratios are remarkably similar and provide
a useful melting criterion.

Equation of state

Undulation theory is further tested by comparison with
the experimental equation of state for DNA solutions at
different ionic strengths. Using osmotic stress, Parsegian
and coworkers have measured the energetic of compacting
long (> 10 µm, Mw > 108) DNA molecules into liquid
crystals [13]. Assuming hexagonal packing, they converted
the osmotic pressure Πos to the force per unit length
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Fig. 2. Strey’s et al. force per unit length vs. interaxial spac-
ing for long (Mw > 108) DNA in 0.1 (4), 0.5 (�), and 1 (◦)
M NaCl [13]. The dashed lines represent the phase bound-
aries between: (I), hexagonal; (II), hexagonal-cholesteric; (III),
cholesteric; (IV), isotropic. The curves are calculated with
equations (4, 5) and u from equations (1–3). The inset displays
the force at small spacings when all counterions are thought to
contribute to screening.

exerted on one DNA molecule by a neighboring chain

f = 3−1/2RΠos (5)

and determined R by X-ray scattering or from measured
densities. Their results in 0.1 M, 0.5 M, and 1 M NaCl
are displayed in Figure 2. The force per unit length from
equations (1–5) and DNA parameters as described above
is displayed in Figure 2. The weakness of the phase tran-
sitions with small differences in DNA concentration ex-
plains why the equation of state does not show significant
discontinuities.

For all ionic strengths undulation theory describes the
data satisfactorily, in view of the fact that there are no ad-
justable parameters. At small spacings and/or lower ionic
strengths the theoretical curves deviate. This is related to
the counterion contribution to the ionic strength, which
has been estimated according to the condensation concept
[30]. As shown in the inset of Figure 2, better agreement
is observed if all counterions are thought to contribute
to screening. It is not necessary to introduce hydration
forces to reproduce the initial decay. However, it should
be noted that the theory is pushed behind its range of
validity for very short and large R-values. For very short
spacings the inner double layers are starting to overlap
and the use of screened electrostatics becomes problem-
atic. In the cholesteric without long range spatial order
the fluctuations formally diverge [5] and undulation the-

ory is not strictly applicable. Its relative success for large
R-values indicates that the local hexagonal packing is pre-
served upon melting.

Anisotropic scattering

The Lindemann ratio and DNA equation of state were
derived by analytical evaluation of the undulation param-
eter u and orientation parameter σ = (u/P )1/3. The ori-
entation parameter of elongated particles can experimen-
tally be determined from anisotropic radiation scattering,
provided the liquid crystal is uniformly oriented [32,33].
Hexagonal DNA can be flow aligned in a capillary [14],
but this procedure is impractical for SANS where rela-
tively large sample volumes are required. Accordingly, the
present neutron experiments were done with magnetically
aligned cholesteric liquid crystals with DNA volume frac-
tions similar to those in the coexisting phase (φ ≈ φc).
From the anisotropy in scattered neutron radiation σ is
derived. For a nematic (or cholesteric) the standard devi-
ation of the angular fluctuations away from the director is
given by σ = (d/P )1/3 [18]. The effective tube diameter d
describes the nematic confinement and is comparable to
u in the hexagonal phase.

Figure 1 displays the peak intensities versus angle α
between the cholesteric axis and direction of momentum
transfer of TMA-DNA in pure water and 0.25 M TMACl.
The TMA form was chosen because of TMA’s negligible
neutron scattering length contrast in H2O. The data are
compared to the anisotropy of the scattering of a uni-
form rodlike segment with qλ � 1 (form function) in-
cluding a Gaussian orientation distribution [15,16]. Any
possible anisotropy in intermolecular interference has been
neglected, since this requires a complete description of the
orientation and position pair correlation.

The orientation parameter σ can be calculated with
undulation theory, if the local hexagonal spatial order is
preserved upon melting (as suggested by the equation of
state). This procedure yields approximately σ = 12◦ for
both liquid crystals. Another possibility is to calculate σ
with second virial theory [16], which gives 9◦ and 12◦ in
pure water and 0.25 M TMACl, respectively. For these
dense systems the second virial and undulation results
are similar. At lower DNA concentration or higher ionic
strengths, undulation theory does not satisfactorily de-
scribe the increase in σ upon approaching the cholesteric-
isotropic transition [16]. This indicates the progressive loss
of local hexagonal structure with decreasing effective ex-
cluded volume. The solid line in Figure 1 was calculated
with σ = 12◦ and is in fair agreement with the experi-
mental data. At the melting transition (φ = φh) the σ
values are approximately 11◦ (TMA-DNA entry, Table 1),
which is close to the experimental cholesteric value (at
φ ≈ φc). The small increase in σ from the hexagonal to
the cholesteric phase can be attributed to a small decrease
in DNA concentration.
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Conclusions

Undulation theory provides a full analysis of three inde-
pendently obtained experimental results. It describes the
ionic strength dependence of the hexagonal side of the
transition when the undulation amplitude exceeds 10%
of the interaxial spacing. The theory reproduces the DNA
equation of state over four decades in force per unit length,
despite that in the cholesteric phase the local hexago-
nal structure is progressively lost. Finally, the analyti-
cal evaluation of the orientation fluctuations agrees with
anisotropic SANS from aligned cholesteric samples just
below the phase transition. We conclude that in liquid
crystal theories DNA can be modeled as flexible wormlike
chains with an effective ionic strength dependent diam-
eter, provided the electrostatic potential is exponentially
renormalized if the undulation amplitude becomes of or-
der the screening length.
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